USDA-ARS Research Geneticist and

Professor of Horticulture University of Wisconsin-Madison

Onion Breeding and Genetics Biennial (2 years per generation)

Year 1: Seed to Bulb in Field

Year 1: Seed to Bulb in Field

Bulb storage and vernalization

Year 2: Bulb selection for seed production

Onion Breeding and Genetics Classical crossing and seed production

Onion Breeding Goals

- For Growers:
 - High quality seed
 - Multiple pest resistances
 - High yields
 - Low post-harvest losses
- For Consumers:
 - Attractive bulbs
 - Good flavor
 - Heath-enhancing attributes
- For Processors:
 - Uniformity
 - Single centers
 - High dry matter

USDA Hybrids

- 'Granex' (1952)
 - **YB986A x TEG951**C
 - Short-day onion (Vidalia)
 - Flat shape with low pungency
 - Short storage ability
- 'Spartan Banner 80' (1979)
 - MSU(611-1Ax611B) x 2399B
 - Long-day pungent onion
 - Good storage and pink root resistance

http://southeastagnet.com

Inbred Releases

- B8667 A&B
 - \circ F₁MSM₂SM₂
 - \circ CMS Line is BC₆
 - Deep red color to internal rings
 - Medium pungency
- Ski-1 A&B
 - \circ F₁MSM₂SM₂
 - \circ CMS Line is BC₅
 - Early maturity, good storage

Development of Value-Added Onions

Traits recognized by the consumer

Development of Value-Added Onions

#1 Consumer Complaint: Onions Make You Cry

LF = Lachrymatory Factor

Reduce Aggregation of Blood Platelets

'Tearless Onion'

Onions Grown on Low Sulfur Soils

Onions Grown on Low Sulfur Soils

Genetic Variation for Low Pungency

MGG 265:543-551 TAG 114:815-822

Genetic Variation for Low Pungency

MGG 265:543-551 TAG 114:815-822

Mutation Breeding for Low Tearing

Mutation Breeding for Low Tearing

Reduced Tearing and Thiosulfinates

Targeted Mutation of LFS

LFS Maps to Chromosome 5

Tandem Duplication of LFS

Two copies of LFS are tandemly linked

Tandem Duplication of LFS

- Two copies of LFS are tandemly linked
- Low probability for mutating BOTH copies

Tandem Duplication of LFS

- Two copies of LFS are tandemly linked
- Low probability for mutating BOTH copies

 Targeted knock-out of <u>both</u> copies of LFS with interfering RNA or gene editing

Interfering (i) RNA

http://upload.wikimedia.org/wikipedia/commons/6/6c/RNAi.jpg

Plant Physiol 147:2096

'Tearless Onion'

RNAi knock-down does NOT cause tearing AND accumulates MORE healthy thiosulfinates!!

- Transgenic onion
- No commercialization
 - Consumer reluctance for GMOs
 - Regulatory and licensing costs
- Great product; large market;
 No go!

https://www.frontiersin.org/files/A rticles/162559/fgene-06-00300-HTML/image_m/fgene-06-00300g001.jpg

https://www.frontiersin.org/files/A rticles/162559/fgene-06-00300-HTML/image_m/fgene-06-00300g001.jpg

Regulation of CRISPR/CAS

- Knock-out native gene
 - Targeted mutation
 - Presently not regulated
- Change protein
 - Same gene
 - May not exist naturally
 - Regulated?
- Build a new gene
 - Similar to transgenics
 - Regulated?

Onion Breeding Approaches

- Natural genetic variation
 - Basis of breeding for 1000s years
- Mutation breeding
 - Random approach
 - Few successes relative to effort
- Transgenics
 - Powerful approach and highly successful
 - Public opposition; high regulation costs
- Gene editing (CRISPR/Cas)
 - Non-random approach
 - Enormous potential for new variation
 - Regulation and public acceptance?

Excellent Research By

- Japan
 - House Foods
- New Zealand
 - Plant and Food Research
- USA
 - USDA and University of Wisconsin
 - J. Craig Venter Institute
 - Funding
 - USDA ARS, NRI, FRA, IFAFS, and SCRI programs
 - Seed companies

