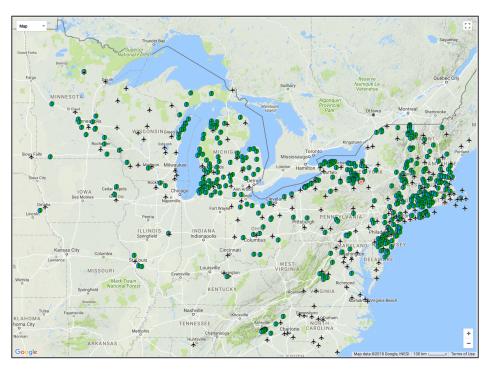
NEWA

The Network for Environment and Weather Applications

2018 Empire State Growers Expo, OCCC

Dan Olmstead, NEWA Coordinator dlo6@cornell.edu


New York State IPM Program

Cornell AgriTech @ NYSAES Geneva, NY

About NEWA

- A decision aide system (DAS) for agriculture.
- A collection of 40+ online models, tools and resources.
- 605 physical weather stations across the United States.

605 NEWA weather stations are located across the Northeast, Midwest, and Mid-Atlantic United States.

Weather station specifications

Rainwise AgroMET MKIII SP1-LR

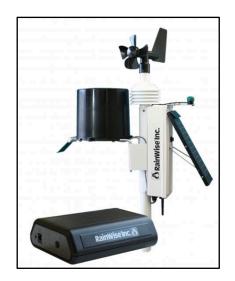
2018 cost:

\$1890

Sensors:

- Temperature
- Dew point
- Relative humidity
- Rainfall
- Wind speed
- Wind direction
- Barometric pressure
- Solar radiation
- Leaf wetness
- Soil temperature (extra cost)
- Soil moisture (extra cost)

Data transmission:


- Wi-Fi to IP100 (high speed internet required)
- Cellular (additional cost)

Service and support:

- 2-year warranty
- 6-year expected lifespan
- 2-year calibration cycle
- Rainwise.net access

Sales contact:

- Lonnie White
- 800-762-5723 (preferred)
- lonnie.white@rainwise.com

Partners and collaboration

Short-term production risk

NEWA provides:

- Short-term risk assessment.
 - Present conditions.
 - Historical analysis.
- Biological interpretation of short-term weather data for growers.

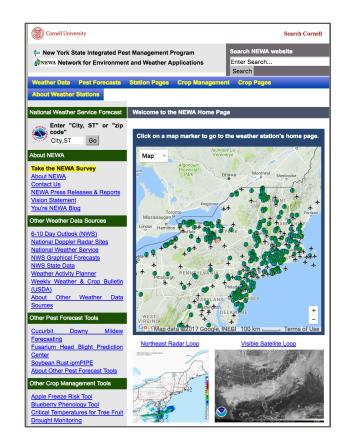
NEWA does not provide:

- Long-term forecasts of insect or plant disease pressure.
- Climatic perspectives.

J. Ogrodnick, Cornell University

W. Wilcox, Cornell Unviersity

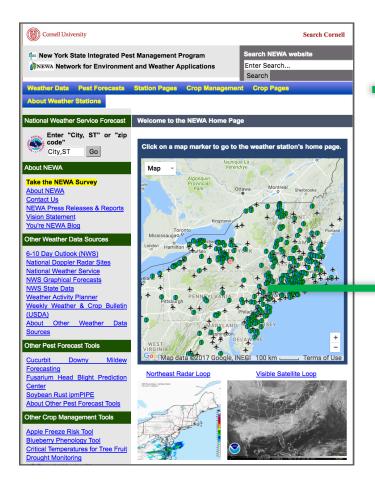
NEWA | newa.cornell.edu New York State IPM Program

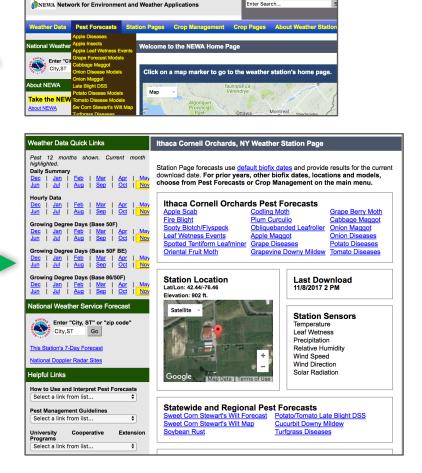

NEWA IPM expertise

- Commodities
 - Apples
 - Dr. Juliet Carroll, Fruit IPM Coordinator, jec3@cornell.edu
 - Grapes
 - Tim Weigle, Grape IPM Specialist, thw4@cornell.edu
 - Vegetables
 - Abby Seaman, Vegetable IPM Coordinator, <u>ajs32@cornell.edu</u>
- Technology and development
 - Dan Olmstead, NEWA Coordinator, dlo6@cornell.edu

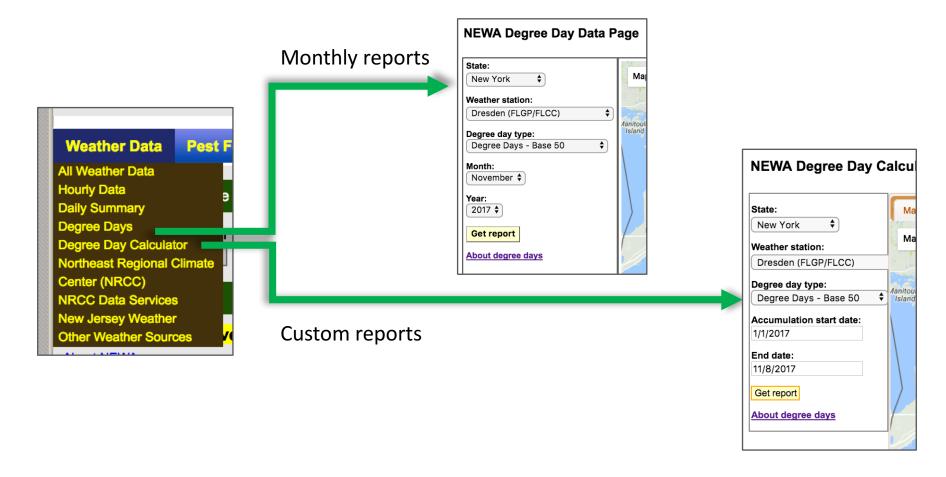
Models, tools, and resources

- Basic weather resources
 - Summaries.
 - Temp, precip, RH, etc.
 - · Derived data.
 - Degree day calculators.
- Commodity-based management tools
 - Insect pests.
 - Plant diseases.
 - Crop load.
 - Irrigation.

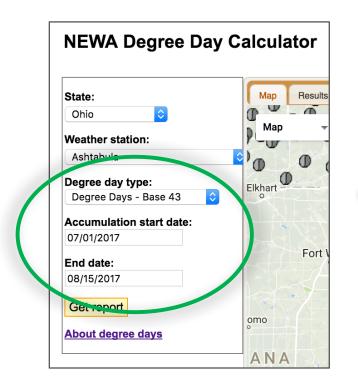


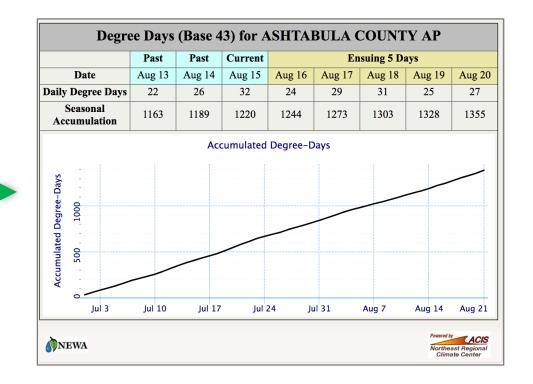


Navigation



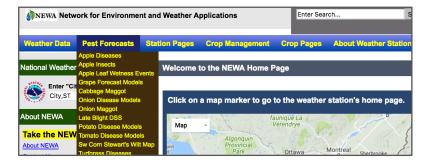
Degree day tools

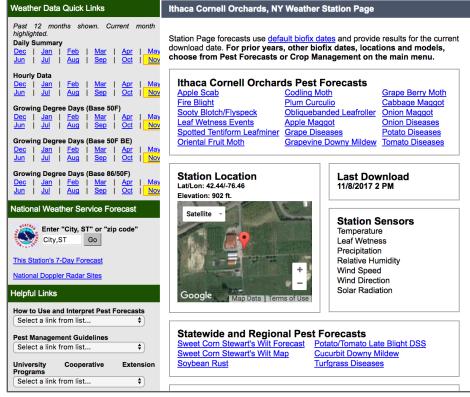




Degree day calculator

Home > Weather data > Degree day calculator





Accessing NEWA tools

NEWA plant disease management

Apples

- Fire Blight.
- Apple Scab.
- Sooty Blotch/Flyspeck

Grapes

- Phomopsis
- Powdery Mildew
- Black Rot
- Downy mildew

Vegetables

- Early blight (Potatoes).
- Late blight (Tomatoes and Potatoes).

W. Wilcox, Cornell University

A. Dunn, NYSIPM

Apple Scab

Apple Scab Results for Ithaca Primary scab season is over. Ascospores were essentially all released on May 1. If you are unsure whether ascospores have been depleted in your orchard, enter your green tip date to recalculate ascospore maturity for your orchard. Green Tip Date: 3/1/2017 **Ascospore Maturity Graphs Infection Events Summary** Past Current **Ensuing 5 Days** Date 6/13 6/14 6/15 6/16 6/17 6/18 6/19 6/20 Infection Events 9-10 Days to Symptom 9-10 Average Temp (F) 67 76 62 63 71 68 61 for wet hours Leaf Wetness 14 4 20 (hours) 10 19 Hours ≥90% RH 11 Rain Amount 0.00 0.10 0.52 1.00 Download Time: 6/21/2017 23:00

Disease Cycle Disease Management

Secondary scab season.
Keep in mind that
inoculum doses are
generally much lower for
ascospores than for
conidia, so the severity of
infection can be greater if
secondary inoculum is
present, as compared with
early in the season, when
only ascospores are
present.

Season-long control is difficult if primary infections develop, which produce secondary inoculum placing orchards at risk for secondary, conidial infections.

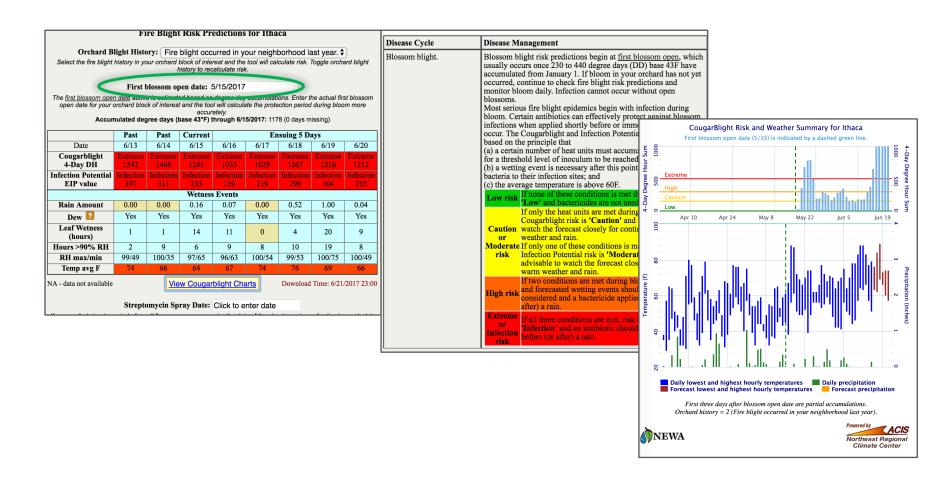
After ascospores are depleted, continue to monitor scab infection events and maintain spray coverage accordingly for at least two more weeks, or until May 15. Scout orchards for primary scab infections after this time.

Focus on protecting trees from secondary scab infections as needed, based on infection events.

Both ascospores and conidia infect at similar rates when tested at equivalent temperatures and inoculum doses. Therefore, the infection events tabulated can be used for both primary and secondary infections.

Apple scab fungicides control disease in different ways. Protectants must be applied before infection occurs. Those with post-infection activity must be applied within a narrow time after the beginning of an infection event. Some fungicides can suppress production of conidia from recent infections or established lesions, presymptom and postsymptom activity, respectively. Understanding these activities and knowing which fungicides exhibit them is important for maximizing the efficiency of a fungicide program.

Start Date & Time	End Date & Time	Wet Hours	Temp Avg. (F)	Rain (in.)	Days to Symptoms	Combined Event	
June 18 7:01 PM	June 20 8:00 AM	27	67	1.56	9-10	Yes	
June 15 2:01 PM	June 16 10:00 AM	16	65	0.23	9-10	Yes	
June 10 3:01 AM	June 10 9:00 AM	6	61	0.01	9-10		
June 4 9:01 AM	June 7 9:00 AM	39	55	0.58	14	Yes	
May 29 3:01 AM	May 31 9:00 PM	34	1	0.04	10.10	**	
May 25 9:01 AM	May 27 11:00 AM	43	1 1				Weather Summary for Ithaca
May 12 8:01 PM	May 15 12:00 AM	29			Greentip o	date (3/1) is ind	licated by a dashed green line
May 4 5:01 PM	May 8 8:00 AM	77	- 18 B	†			95%
May 1 6:01 PM	May 3 11:00 AM	13	1 g	1			
April 27 11:01 PM	April 28 5:00 AM	6	Ascospore Maturity				4
April 19 12:01 PM	April 21 1:00 PM	44	a e c	· -			
April 15 3:01 PM	April 16 7:00 PM	8	T S	7			
April 3 11:01 PM	April 4 12:00 PM	13	T Š 。				
March 30 7:01 PM	April 2 9:00 AM	44	3	The	Ascospore Mat	urity model pre	dicts that 95% of the spores are
March 28 11:01 AM	March 29 10:00 AM	23	14				all ascospores will be released after a
March 24 8:01 AM	March 27 9:00 AM	39	- 3		r 13 Mar 27		Apr 24 May 8 May 22 Jun 5
			Temperature (F) 25 0 25 50 75				
				Daily Foreca	lowest and hig ast lowest and	hest hourly te highest hourly	mperatures Daily precipitation y temperatures Powered by Northeast Regic



Fire Blight

Sooty Blotch/Fly Speck

	Past	Past	Current	5-D	ay Foreca	st Fore	cast Deta	ils	
Date	May 13	May 14	May 15	May 16	May 17	May 18	May 19	May 20	
Days since petal fall	12	13	14	15	16	17	18	19	
Accumulated Leaf Wetness Hours - ALWH	108	119	NA	NA	NA	NA	NA	NA	
Risk Level	Low	Low	NA	NA	NA	NA	NA	NA	
Rain Events and Fu	Rain Events and Fungicide Depletion Estimate								
Days since last fungicide application	-	-	-	1	2	3	4	5	
Rain since last fungicide application	-	-	-	NA	NA	NA	NA	NA	
Daily rain amount (inches)	0.16	0.35	NA	NA	NA	NA	NA	NA	
Rain probability (%) Night Day			- -	- -	- -	- -	- -	- -	

Sooty Blotch and Flyspeck Risk Predictions for Ithaca

Petal fall date for McIntosh: 5/1/2017

Petal fall date above is estimated based on degree day accumulations or user input.

Enter the actual date for blocks of interest and the model will calculate the accumulated leaf wetness hours since petal fall more accurately.

Most recent fungicide application date: 5/15/2017

If petal fall has passed, enter the date of your most recent fungicide application.

If no fungicide applications have been made, do not enter a date.

In the Risk Summary table, note the accumulated leaf wetness hours since petal fall (Leaf Wetness Hours) and the Risk Level. Leaf wetness hours, rain events, and the last fungicide application date are taken into consideration in assessing risk level. To estimate risk in the near future, look at the probability of rain.

Consult the Risk Level IPM Guidelines below the Risk Summary table.

Risk Level IPM Guidelines for Sooty Blotch and Flyspeck:

- NO RISK No action needed.
- LOW RISK If first cover application has not been made, make first cover fungicide application for apple scab. Otherwise, no action needed.
- MODERATE RISK Check the 5-day forecast; a cover application should be made if two or more days with precipitation are predicted. See Fungicides below.
- HIGH RISK A cover application for Sooty Blotch and Flyspeck should be made. See Fungicides below.

Grape Diseases

Grape Disease Infection Events for Ithaca								
	Past	Past	Current	Grape Disease 5-Day Forecast Forecast Details				
	May 13	May 14	May 15	May 16	May 17	May 18	May 19	May 20
Phomopsis	Combined	Combined	Yes	-	-	-	-	-
Powdery Mildew	Yes	Yes	No					
Black Rot	No	No	No; temp<50	-	-	-	-	-

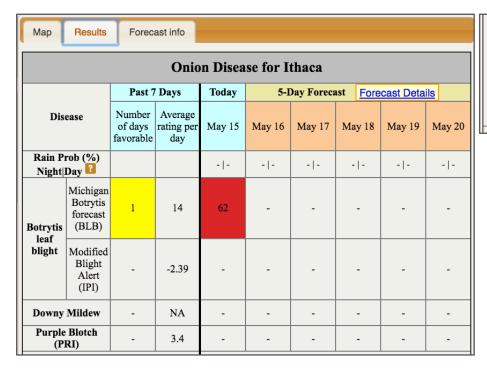
Phomopsis - calculates when weather conditions may allow spores to infect susceptible tissue.

Powdery Mildew - calculates primary infection when weather conditions may allow overwintered, primary spores (ascospores) to infect susceptible tissue; runs from bud break until pre-bloom. Once primary infections have occurred, secondary infections (disease spread) are possible every day. The threat is greatest when temperatures are between 65 to 90 degrees F and is particularly high when conditions are cloudy.

Black Rot - calculates when weather conditions may allow spores to infect susceptible tissue.

Phenological stage: 3-5 inch shoot

Choose the phenology stage for the grape variety of interest to display management messages. Concord grape phenology is estimated by the model from historical records for this variety.


Disease	Disease Management				
Phomopsis The early spray at around 3 inch shoot growth, when clusters first become vis is most important for controlling rachis infections, shoot infections that serve future sources of inoculum, and infections that move from berry stems into the fruit. A minimal spray program should include at least one application during period to protect against infection events, especially in blocks with a history of Phomopsis and on highly susceptible varieties.					
Powdery Mildew					
Bury mummies by cultivating or mulching within the row. A reminder - under NY conditions, berries are highly susceptible to black rot from cap fall until 3-4 week (Concord) or 4-5 weeks (Riesling, Chardonnay) later, gradually losing susceptibility and finally becoming highly resistant after another 2 weeks.					



Onion Diseases

Potato Diseases

Potato Disease Forecast for Ithaca									
Forecast	Yesterday	Today]	Ensuin	g 6 Day	/S		
Forecast	6/14	6/15	6/16	6/17	6/18	6/19	6/20	6/21	
Early blight P-Days Show p-day log	244	252	261	271	279	286	295	304	
Late Blight Blitecast Severity Values Show severity value log	20	20	20	21	21	25*	26	26	

^{*} indicates wet period in progress; reported value is for forecasted end of wet period. Observed data available through 6/21/2017 23:00.

	P-Days Key							
< 300	Below threshold.							
>=300	P-Day threshold exceeded.							
	Blitecast Key							
>= 18	>= 18 Severity value threshold exceeded.							

More Information

Disclaimer: These are theoretical predictions and forecasts. The theoretical models predicting pest development or disease risk use the weather data collected (or forecasted) from the weather station location. These results should not be substituted for actual observations of plant growth stage, pest presence, and disease occurrence determined through scouting or insect pheromone traps.

Tomato Diseases

Tomato Disease Forecast for Ithaca								
Forecast	Yesterday	Today		J	Ensuin	g 6 Day	/S	
Forecasi	6/14	6/15	6/16	6/17	6/18	6/19	6/20	6/21
Early blight, Septoria leaf spot, anthracnose TOMCAST Show Tomcast log	14	14	17	17	17	20*	21	21
Late Blight Blitecast Severity Values Show severity value log	20	20	20	21	21	25*	26	26

^{*} indicates wet period in progress; reported value is for forecasted end of wet period. Observed data available through 6/21/2017 23:00.

	TOMCAST Key							
< 25	<25 Below threshold.							
	Blitecast Key							
>= 18	>= 18 Severity value threshold exceeded.							

More Information

Disclaimer: These are theoretical predictions and forecasts. The theoretical models predicting pest development or disease risk use the weather data collected (or forecasted) from the weather station location. These results should not be substituted for actual observations of plant growth stage, pest presence, and disease occurrence determined through scouting or insect pheromone traps.

NEWA insect pest management

Apples

 Codling Moth, Obliquebanded leafroller, Plum Curculio, Oriental Fruitmoth, Apple maggot, Spotted Tentiform Leafminer, and San Jose Scale.

Grapes

- Grape Berry Moth.
- Vegetables
 - Cabbage maggot and onion maggot.

Apple Insects

Codling Moth Results for Ithaca

First Trap Catch: 4/1/2017

First Trap Catch date above is estimated passed on degree day accumulations or user input. Enter the actual date for blocks of interest and the model will calculate the protection period after first trap catch more accurately.

Accumulated degree days (base 50°F) first trap catch through 5/14/2017: 229 (0 days missing)

		Past	Past	Current	5-D	ay Foreca	st <u>Fore</u>	cast Deta	<u>ils</u>
	Date	May 13	May 14	May 15	May 16	May 17	May 18	May 19	May 20
	Degree Days ase 50BE)	1	3	0	-	-	-	-	-
	nulation since anuary 1	280	284	284	-	-	-	-	-
			Acc	umulated	Degree-E	Days			
ays									/
Accumulated Degree-Days	500								
ed De	-						م		
umulat	100								
Acc	0								
	Jan 1	Feb	1	Mar 1		Apr 1		May 1	

Pest stage: Moth catches increasing and eggs begin to hatch \$

Pest Status	Pest Management
Eggs usually begin to hatch about 220 DD after the first catch, and catches of adults should be increasing in pheromone traps.	Apply the first spray for control of overwintering CM at 250 DD after first catch. In some seasons, Plum curculio will still be active at this time and a broad spectrum material should be selected to control both of these pests at this time in high risk PC orchards. If internal worm damage has been observed in past years in an orchard, CM populations may be resistant to organophosphate and synthetic pyrethroid insecticides and other classes of materials may be more effective.

Grape Berry Moth

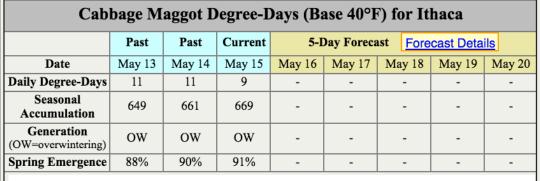
Grape Berry Moth Results for Ithaca

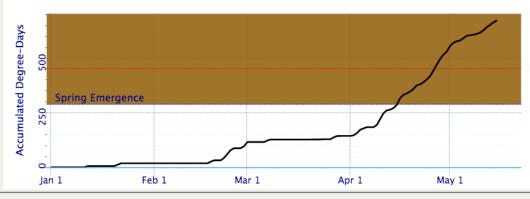
Wild Grape Bloom: 5/1/2017

Wild Grape Bloom date above is estimated based on degree day accumulations or user input. Enter the actual date for blocks of interest and the model will calculate the results more accurately.

Accumulated degree days (base 47.14°F) wild grape bloom through 5/15/2017: 63 (0 days missing)

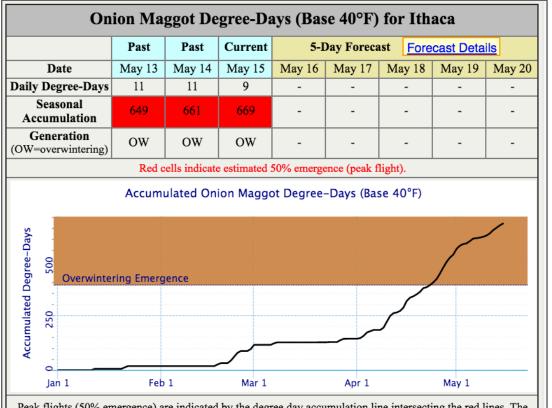
Daily Degree Days for Ithaca								
Base Temp	Past	Past	Current	5-1	Day Foreca	st <u>Fore</u>	cast Detai	ls
	May 13	May 14	May 15	May 16	May 17	May 18	May 19	May 20
47.14F - GBM	3	3	NA	NA	NA	NA	NA	NA
Accumulation	60	63	NA	NA	NA	NA	NA	NA
NA - not available						Dov	vnload Time	: 5/15/2017


Pest Status	Pest Management
First generation of grape berry moth larvae are hatching and beginning feeding. Grape berry moth will not be at significant population levels in all but the highest risk vineyards.	Research has shown that this insecticide timing for the first generation provides little, if any, additional control of grape berry moth in vineyards classified as being at low, intermediate or high risk for grape berry moth damage. However, an insecticide timed with the immediate postbloom fungicide application can be used in vineyards experiencing significant crop loss from grape berry moth on a yearly basis or in high value vinifera blocks.



Cabbage Maggot

Accumulated Cabbage Maggot Degree-Days (Base 40°F)


Peak flights (50% emergence) are indicated by red lines. Seedlings, transplants or root crops present around the time of peak flights, the date when the black line crosses the red line, should be protected by an insecticide treatment or with row covers. Insecticides are applied just prior to planting; row covers must be in place well before adults begin to emerge.

Onion Maggot

Peak flights (50% emergence) are indicated by the degree day accumulation line intersecting the red lines. The most critical time to protect the crop is during the peak emergence of the overwintering generation when plants are small. Target larvae with insecticide treated seed or an at-planting insecticide drench, or protect plants from egg-laying female flies with row covers. Row covers must be in place well before adults begin to emerge. Use the forecast to predict first emergence.

NEWA crop management tools

- Apples
 - Carbohydrate thinning model.
 - Irrigation model

Apple Carbohydrate Thinning model

Home > Crop Management Tools> Apple Carbohydrate Thinning

	Apple Carbohydrate Thinning Model for Ithaca									
Change green tip and/or bloom date and click "Calculate" to recalculate results.										
Green tip date Bloom da										
3/1/2017 4/25/2017										
Apple Carbohydrate Thinning Model Results										
. .	Max	Min	Solar	Tree Ca	ee Carbohydrate Status (g/day)			Thinning		
Date	Temp (°F)	Temp (°F)	Rad (MJ/m2)	Production	Demand	Balance	4-Day Ave Balance	Recommendation		
5/11	64	36	18.3	72.12	71.98	0.14	-26.59	Decrease chemical thinner rate by 15%		
5/12	65	45	15.5	65.10	97.09	-31.99	-27.97	Decrease chemical thinner rate by 15%		
5/13	53	48	5.0	24.68	76.54	-51.86	-23.17	Decrease chemical thinner rate by 15%		
5/14	59	43	11.7	56.29	78.94	-22.65	-34.25	Decrease chemical thinner rate by 15%		
5/15	61	45	20.2	83.14	88.54	-5.40	-56.06	Decrease chemical thinner rate by 30%		
5/16	67	38	15.3	73.20	85.97	-12.77	-63.59	Decrease chemical thinner rate by 50%		
5/17	88	56	26.7	90.92	187.12	-96.19	-62.21	Decrease chemical thinner rate by 50%		
5/18	87	61	21.9	82.58	192.45	-109.87	-45.18	Decrease chemical thinner rate by 30%		

Apple irrigation model

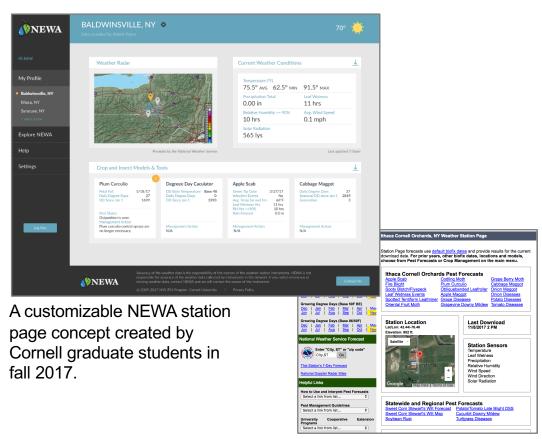
Home > Crop Management Tools> Apple Irrigation

Apple ET Model for Ithaca	
Change green tip date or tree density and click "Calculate" to recalculate results. Changing "Age of Orchard" will automatically recalculate table.	

Green tip date	In row	Between row spacing	Trees per	Age of	Water balance
3/1/2017	10 feet	6 feet	726	Mature \$	

	Apple Evapotranspiration Model Results									
Date	Orchard ET (gallons)		Rainfall		Irrigation		n	Water Balance (gallons/acre)		
	per tree	per acre	inches	gallons/acre	g	allons/ac	cre	Daily	Cumulative	
May 8	1.2	851	0.09	1711		0		860	0	
May 9	2.3	1649	0.00	0		0		-1649	-1649	
May 10	1.9	1385	0.00	0		0		-1385	-3034	
May 11	2.7	1931	2.4	45619		0		43688	0	
May 12	2.8	1997	0.01	190		0		-1806	-1806	
May 13	0.5	352	0.16	3041		0		2690	0	
May 14	1.4	1036	0.35	6653		0		5617	0	
May 15	-188.3	-136704	0.04	760		0		137465	0	
May 16	-188.3	-136704	0.00	0		600		137304	0	
May 17	-188.3	-136704	0.00	0		0		136704	0	
May 18	-188.3	-136704	0.10	1901		0		138605	0	
May 19	-188.3	-136704	0.00	0		0		136704	0	
May 20	3.3	2402	0.00	0		0		-2402	-2402	
May 21	3.0	2154	0.00	0		0		-2154	-4555	

NEWA | newa.cornell.edu New York State IPM Program



Future NEWA

- Major redesign
- 2019 tentative launch
- Compatibility with all devices and computers
- User accounts*
 - Saved settings
 - Selectable models

Current static NEWA station page design.

